The SA25 Workcell contains key technologies like gloveless isolator, robotics, machine vision, automated environmental monitoring.

The Workcell Approach: Robotics, machine vision and isolators

See how Vanrx technologies integrate in 21st Century Manufacturing of Sterile Injectables

Gloveless isolator

Improve aseptic assurance and eliminate glove ports

Semiconductor grade particle control

With a gloveless isolator, particle counts as low as ISO 2 levels become possible. Inside the isolator, the mechanical design is simple, allowing for complete and consistent clean-in-place (CIP) and vapour-phase hydrogen peroxide (VPHP) decontamination. The robotics are designed to minimize particle generation in their movements.

No need for gloves

Vanrx designed a filling process with no need for human interventions through glove ports. The process flaws that create the need for human interventions are designed out of the system.

With no conveyors, belts, sortation devices, or mouse holes, this is the first completely closed isolator.

Minimize product risk

The Workcell’s design eliminates many sources of particle generation, such as aluminum crimp caps. Single-use consumables prevent cross-contamination.

Robotics

Repeatable precision

Robotic handling, filling and closing

Vanrx’s robotics are designed for simple movement to increase uptime and reliability. They are built using 316L stainless steel. By filling nested vials, syringes, and cartridges, material handling is simplified. Nests are capped or stoppered as a single unit, using innovative new methods that increase precision and lower particle generation.

Isolated robotics

The Workcell’s robotics can withstand clean-in-place water, potent drug materials, and hydrogen peroxide.

Fast changeover

With a limited number of change parts, a Vanrx filling machine can be changed between vials, syringes or cartridges and decontaminated in 1 hour or less. This allows companies to product at least one different product each day. 

Any intervention or stoppage during an aseptic process can increase the risk of contamination. The design of equipment used in aseptic processing should limit the number and complexity of aseptic interventions by personnel…Automation of other process steps, including the use of technologies such as robotics, can further reduce risk to the product.

– U.S. Food and Drug Administration, Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing Practice

Nested container and closure systems

Ready-to-use
-0%1%2%3%4%5%6%7%8%9%10%11%12%13%14%15%16%17%18%19%20%21%22%23%24%25%26%27%28%29%30%31%32%33%34%35%36%37%38%39%40%41%42%43%44%45%46%47%48%49%50%51%52%53%54%55%56%57%58%59%60%61%62%63%64%65%66%67%68%69%70%71%72%73%74%75%76%77%78%79%80%81%82%83%84%85%86%87%88%89%90%91%92%93%94%95%96%97%98%99%100%

Less materials preparation space / equipment

With ready-to-use nested components, facilities do not need dedicated space for container sorting, sterilization and depyrogenation.

Plant operators can focus on value-added filling activities and maintain a high level of uptime, fitting with lean manufacturing methods.

The Matrix Alliance

Vanrx is a founding member of the Matrix Alliance, a collaboration between major pharmaceutical packaging companies for testing and compatibility of nested containers and closures. Collaboration helps streamline customers’ packaging selection and speed new therapies to market.

Faster to market

With container performance and compatibility assured, pharma companies can move through process development more quickly. Nests also allow handling of container and closure formats for novel injection devices in an Aseptic Filling Workcell.

See our packaging and facilities partnerships

Environmental decontamination & monitoring

Manage risk
-0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100
minutes

For 6-log decontamination

Vapor-phase hydrogen peroxide (VPHP) kills biological indicators quickly for fast batch cycling. The simplicity of the elements inside the gloveless isolator means the hydrogen peroxide can reach every surface, and then be aerated quickly.

Particle counting

The SA25 Aseptic Workcell is equipped with a peroxide-compatible, continuous non-viable particle counter. Customers observe extremely low particle counts because the whole system is designed to minimize risk to the product and is closed to the outside environment.

Viable monitoring

Air sampling of viable particles is performed during machine operation. Product contact surface viable monitoring is performed robotically at the end of each batch. 

The Workcell Approach

Scalable production

Proven in semiconductors

The Workcell Approach dominates semiconductor manufacturing, where robotic automation has driven remarkable productivity and quality improvements. Vanrx’s isolator and robotics designs are adapted to withstand decontamination and cleaning procedures.

Lean, scalable manufacturing

The Workcell Approach is highly scalable because of standardized machines. If more capacity is needed to meet demand, or there is a requirement to produce in new locations, workcells can be added. Manufacturing processes using a workcell are highly repeatable, easing the technology transfer process.

Built-in flexibility

The Aseptic Filling Workcell is a shift away from conventional aseptic filling machines, which have complex changeover procedures to support flexibility. The Workcell equips companies to shift its production in response to the market, such as when new products are acquired, or new international markets are entered.